图片新闻

实验室导航

首页 » 教师风采 » 正文

杨鹏

发布时间:2016-09-14
杨鹏,博士,研究兴趣集中在纳米颗粒及其自组装的光学和电学性能,原子分子操纵,人工纳米结构的电学性能,纳米电子学等。师从欧洲科学院院士Marie-Paule Pileni教授,于2010年在法国居里夫人大学(巴黎六大)获得博士学位。2012年取得法国高校教师资格,并在巴黎狄德罗大学(巴黎七大)任教。美国能源部劳伦斯伯克利国家实验室访问学者。2016年作为引进人才全职加盟云南大学。承担和参与过国家自然基金、欧盟ERC、欧盟FP7、法国ANR、伯克利国家实验室项目等。部分论文发表在Nano Letters, ACS Nano, Physical Review B, Journal of Physical Chemistry C, Journal of Chemical Physics, Journal of Physics: Condensed Matter等国际知名杂志上。同时是国家自然基金通讯评审人,美国化学会、英国皇家物理学会旗下期刊审稿人,伯克利国家实验室分子工厂用户执委会委员、中国物理学会会员、全法中国科技工作者协会会员、全国材料新技术发展研究会理事、四川中制工业设计研究院学术委员会委员等。
                 

***************************************************************************************

联系方式:
                                                            pyang(at)ynu.edu.cn                  
       
***************************************************************************************                                                            
                 

研究生招生:

欢迎本校及外校优秀本科毕业生报考本团队杨鹏、万艳芬老师,对考生基本要求:

1. 热爱生活、热爱科学,对未知世界充满了好奇,有强烈的求知欲望;

2. 心胸宽广,有责任心、踏实,良好的团队合作精神;

3. 欢迎跨学科报考(物理、化学、材料、生物等),我们相信交叉学科背景会带来宽广和不同的视野。

【特别注意】研究生阶段所接受的训练将对未来职业生涯(无论是否从事与科研相关的职业)的成败起到非常关键的作用,因此抱有“混学位”思想的同学请谨慎报考,不想努力的同学难以适应本团队的科研生活。课题组将竭力为同学们提供宽松的学术氛围、良好的科研条件、畅通的对外交流通道,欢迎有梦想的你到来!

News:

祝贺2016届高宇同学荣获云南大学优秀本科生毕业设计。

***************************************************************************************

祝贺尹航同学荣获法国驻华使馆优秀硕士奖学金,赴法国参加“先进材料”暑期学校。

 

                                                     

 

 

News                                                                                                                                                                                                      

杨鹏老师参加由中国工程院、中国材料研究学会、材料学术联盟在南京主办的“2016新材料国际发展趋势高层论坛”,受邀在“优秀青年科学家论坛”做学术报告,并获得由周廉院士和黄维院士颁发的“优秀青年报告”奖。

                     

***************************************************************************************

                  

Title of the Research Project:                      

Synthesis and organization of copper nanoparticles with well-controlled sizes and shapes: toward collective physical properties.                    

Laboratory : MONARIS UMR 8233, Université Pierre et Marie Curie                    

Site web http://www.monaris.cnrs.fr/

                   

Research Team : Pole 2 du nano-objet au solide                    

 

Supervisor : Nom, établissement Alexa Courty , Université Pierre et Marie Curie                    

Adresse mail :alexa .courty@upmc.fr

                     

Lab Language : French/English

                     

Abstract :

      The recent decades have shown that nanoparticles (NPs) can play an important role in a lot of different fields such as biology, catalysis, and magnetism. However, in order to control the properties of such materials a perfect design of the nano-object is required by means of shape, size, crystallinity and composition. In the case of metallic NPs, CuNPs have received great attention because Cu is much cheaper than Ag or Au. Moreover very peculiar optical, electrical and thermal properties have been described for CuNPs. Furthermore, nanosized Cu exhibits a prominent Localized Surface Plasmon Resonance in the visible range as Ag and Au. A major drawback limiting the use of CuNPs is their tendency to oxidize. The literature on the synthesis of CuNPs of controlled size and shape is thus less developed than that for Ag or Au NPs. Among the methods of CuNPs elaboration reported in the literature, were mainly, the thermal decomposition, reduction in micro emulsion and reverse micelles, polyol process and chemical reductions. Nevertheless, most of the existing methods of CuNPs synthesis produce particles of large polydispersity (≥20%) or of sizes larger than a few tens of nm. Moreover the size distribution is a key parameter to obtain reproducible and controllable chemical and physical properties of nano- objects and allows self-organization at long range (1,2). In fact a long-range order is necessary for the practical incorporation of NPs in functional devices. The strategy based on the reduction of an organometallic precursor in the presence of ligands at a controlled reaction temperature and by a weak reducing agent is a procedure developed since a few years for the preparation of gold or silver NPs of controlled size and shape (3-5). This soft chemistry method offers several parameters including temperature, nature and concentration of the ligand, nature of the organometallic, which have a strong influence on the size, shape and surface composition of NPs. Very recently, we have applied this strategy for the synthesis of CuNPs with tunable size and shape based on the reduction of an organometallic precursor (ClCu(PPh3)3) in the presence of alkylamine (dodecylamine (DDA) or oleylamine (OYA)) (6). The temperature and DDA-to-copper precursor ratio are shown to control the final spherical NPs sizes. Other CuNP shapes (triangles, nanodisk and nanorods) have been synthesized depending on the temperature and reducing agent-to-copper precursor ratio especially for longer amine chains such as OYA. Their stability under air has been not yet studied.
                   

     The aim of the thesis is to achieve the synthesis of only one type of CuNP shape (nanorod, triangles or nanodisks) and to expand the size range already obtained for spherical NPs with a good control of their size distribution. The nature of the ligands will be optimized in order to improve their stability against oxidation.                    

        For that purpose, an optimization of the precursor, solvent, coating agent, strength of the reducing agent and reaction temperature will be carried out. Varying the nature of R (different halogens) or L (number of PPh3) in the precursor  (RCuL) will allow to tune the CuNP size shape and surface composition. NPs Growth will be follow in situ by UV-visible and IR spectroscopy. Shape size and surface composition (nature of the ligands) will be thus characterized. By transmission electron microscopy, we will follow also the evolution of size, shape of CuNPs but also their crystallinity and oxidation state.                    

        Finally, their organizations at 2D or 3D will be studied. Coupling between nanoparticles should induced specific collective properties (optical (SERS (1)), vibrational (low frequency Raman scattering) and electronic properties) depending on their arrangement (characterized by X ray diffraction) and that will be investigated.                    

Key words: copper nanoparticles, chemical synthesis, surface Plasmon, organization, IR and UV-visible spectroscopies, transmission electron microscopy, X ray diffraction, low frequency Raman scattering.                      


References:
                     

(1)                 P. Aubertin, M. A.B Aissa, N. Raouafi, S. Joiret, A. Courty and E. Maisonhaute. Nanoresearch. 8, 1615-1626  (2015).                    

(2)                 K. Ouadahi-Ouhenia, A. Andrieux-Ledier, Johannes Richardi, P.-A. Albouy, P. Beaunier, P. Sutter, E. Sutter and A. Courty, Chem. Mater, 28, 4380-4389 (2016)                    

(3)                 A. Andrieux –Ledier, B.Tremblay and A.Courty , J.Phys.Chem.C, 117, 14850-14857 (2013).                    

(4)                 N. Zheng, J. Fan, G.D. Stucky, J. Am. Chem. Soc. 2006, 128, 6550-6551 (2006)                    

(5)                 H. Portales, N.  Goubet,  L. Saviot, S. Adichtchev, D.B. Murray, A. Mermet, E.Duval, M.P. Pileni, Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 14784-14789 (2008).                    

(6)                 M.A.B. Aissa, B.Tremblay, A. Andrieux-Ledier, E. Maisonhaute ; N. Raouafi and A.Courty, Nanoscale, 7, 3189-3195 (2015).                    

…………………………………………………

                   

Profile du candidat rechercher                    

Candidate Master Training Research and / or engineer in the field of materials chemistry. Knowledge and skills in synthesis / development by soft chemistry and physico-chemical characterization are needed.                    

 
 
部分代表性论文:
     
9. J. Wei, P. Yang, H. Portalès, P.-A. Albouy, and M.P. Pileni, Collective Surface Plasmon Resonances in Two-Dimensional Assemblies of Au and Ag Nanocrystals: Experiments and Discrete Dipole Approximation Simulation, J. Phys. Chem. C 2016, 120 (25), 13732
                                                     

8. P. Yang, D. Li , V. Repain, C. Chacon, Y. Girard, S. Rousset, A. Smogunov, Y. J. Dappe, C. Barreteau, and J. Lagoute, C60 as an Atom Trap to Capture Co Adatoms, J. Phys. Chem. C, 2015, 119 (12), 6873–6879
                                                     

7. P. Yang, I. Arfaoui, T. Cren, N. Goubet, and M.P. Pileni, Supracrystals of Au-nanocrystals differing by their diameters: Influence of the Thickness and Nanocrystallinity on the Electronic Properties, J. Phys.: Condens. Matter, 2013, 25 (33), 335302
                                                     

6. P. Yang, I. Arfaoui, T. Cren, N. Goubet, and M.-P. Pileni, Electronic properties probed by scanning tunneling spectroscopy: From isolated Au nanocrystal to well-defined supracrystals, Phys. Rev. B, 2012, 86 (7), 075409
                                                     

5. P. Yang, I. Arfaoui, T. Cren, N. Goubet, and M.-P. Pileni, Unexpected Electronic Properties of Micrometer Thick Well-defined Supracrystal of Au Nanocrystals, Nano Lett. 2012, 12 (4), 2051-2055

                                                     
4. P. Yang, H. Portalès, and M.-P. Pileni, Dependence of the localized surface plasmon resonance of noble metal quasispherical nanoparticles on their crystallinity-related morphologies, J. Chem. Phys. 2011, 134 (2), 024507
                                                     

3. H. Portalès, N. Goubet, L. Saviot, P. Yang, S. Sirotkin, E. Duval, A. Mermet, and M.-P. Pileni, Crystallinity Dependence of the Plasmon Resonant Raman Scattering by Anisotropic Gold Nanocrystals, ACS Nano 2010, 4 (6), 3489-3497
                                                     

2. P. Yang, H. Portalès, and M.-P. Pileni, Ability to discern the splitting between longitudinal and transverse plasmon resonances in Au compared to Ag nanoparticles in close-packed planar arrays, Phys. Rev. B 2010, 81 (20), 205405
                                                     

1. P. Yang, H. Portalès, and M.-P. Pileni, Identification of Multipolar Surface Plasmon Resonances in Triangular Silver Nanoprisms with Very High Aspect Ratios Using the DDA Method, J. Phys. Chem. C 2009, 113 (27), 11597-11604
                                                     
                 
***************************************************************************************                  
部分学术报告:
 

 

25. 邀请报告,第十六届全国青年材料科学技术研讨会,天津,2017年10月13-15日

24. 邀请报告,中国材料大会2017暨银川国际材料周,银川,201776-12

23. 邀请报告,国家自然科学基金委员会第五届全国金属材料优秀青年学者论坛,长春,2017112-15

22.新人报告,第六届全国凝聚态物理青年科学家论坛,南京,20161111-13

22.新人报告,第六届全国凝聚态物理青年科学家论坛,南京,2016年1月11-13日
21.邀请报告,第17届亚洲材料大会(IUMRS-ICA 2016)暨中国材料大会2016,青岛,2016年10月20-                 24日
20.Talk invited by Prof.Yue Li at Institute of Solid State Physics,Hefei,Sept.27,2016
19. 优秀青年科学家论坛邀请报告,2016新材料国际发展趋势高层论坛,南京,2016年9月24-26日
18. Invited talk by prof. Xiwen Du in Tianjin University, Sept. 5, 2016
17. 大会报告,第十届全国材料科学与图像科技学术会议,洛阳,2016年8月16日
16. Talk on The 8th International Conference on Nanophotonics, May 24 - 28, 2015, Changchun, China
15. Invited talk at State Key Lab of Quantum Optics and Quantum Optic Devices, Shanxi University, May 8, 2015, Taiyuan, China
14. Invited talk at No. 33 Research Institute of China Electronics Technology Group Corporation, May 7, 2015, Taiyuan, China
13. Invited talk on 2014 National Conference on Application and Development of Advanced Compound      Materials, Dec. 19 - 21, 2014, Yangzhou, China
12. Talk invited by Prof. Huabing Chen in Suzhou University, Dec. 15, 2014, Suzhou, China
11. Invited talk on the 13th China International Conference on NanoScience and Technology, Oct. 26 - 30, 2014, Chengdu, China
10. Talk invited by Prof. Jianhui Yang at College of Chemistry and Materials Science, Northwest Uni- versity, Mar. 13, 2014, Xi’an, China
9. "Fabrication and study of C60-Cox complex using low temperature scanning tunneling microscopy and spectroscopy" in International Conference on Nanoscience + Technology (ICN+T 2013), Sept. 9 - 13, 2013, Paris, France
8. "Fabrication and physical properties of C60-Cox complex using LT STM" in Max Planck Institute of Microstructure Physics, Jun. 3, 2013, Halle, Germany
7. "C60-Cox complex built by atomic/molecular manipulation using low temperature scanning tunneling microscopy and its physical properties studied by tunneling spectroscopy" in ImagineNano 2013, Apr. 23-26, 2013, Bilbao, Spain
6. "Fabrication and study of C60-Cox complex using low temperature scanning tunneling microscopy and spectroscopy" in forum 2013 microscopies à sonde locale, Mar. 25 - 29, 2013, Spa, Belgium
5. "ElectronTransportinSupracrystalsofGoldNanocrystals"inInternationalConferenceonNanoscience + Technology (ICN+T 2012), Jul. 23-27, 2012, Paris, France
4. "Electron transport: from isolated Au nanocrystal to well-defined supracrystals" as Hot Topic in the 16th International Symposium on Small Particles and Inorganic Clusters (ISSPIC-XVI), Jul. 8-13, 2012, Leuven, Belgium
3. "Thick supracrystals of Au nanocrystals: an unexpecte observation" in workshop honoring professor Katsumi Kaneko (Journée IUF), Jun. 14, 2011, Paris, France
2. "Well-defined thick Au supracrystal: collective electronic properties" in forum 2011 microscopies à sonde locale, du 28 mars au 1 avril 2011, Lyon, France
1. "Simulation of absorption spectra of metal nanoparticles by the DDA method" in Journée Modélisa- tion de l’institut des Matériaux de Paris Centre, Sept. 8, 2009, au collège de France, Paris, France
                 
***************************************************************************************                  
授权专利:      

一种金纳米颗粒自组装可移植单层薄膜的制备方法,万艳芬,杨鹏,水世显,张显,吴治涌,
授权号:201510765301.8

     
注:本页面论文以所对应PDF文件内形式的版权属于对应的出版社,下载论文请勿用于商业用途,如需使用其中图形和文字,请联系相关出版社。
相关附件

上一条:万艳芬 下一条:白慧萍

    云南大学材料科学与工程学院    版权所有   COPYRIGHT (C)   2013   ALL   RIGHTS  RESERVED
    昆明市翠湖北路2号    邮编:650091
    云南大学网络中心  技术支持